Physical Address
304 North Cardinal St.
Dorchester Center, MA 02124
Physical Address
304 North Cardinal St.
Dorchester Center, MA 02124
Siegel RL, Miller KD, Fuchs HE, Jemal A. Most cancers statistics, 2022. CA Most cancers J Clin. 2022;72(1):7.
Thrift AP, El-Serag HB. Burden of Gastric Most cancers. Clin Gastroenterol Hepatol. 2020;18(3):534–42.
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. International most cancers statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 international locations. CA Most cancers J Clin. 2018;68(6):394–424.
Fock KM. Evaluation article: the epidemiology and prevention of gastric most cancers. Aliment Pharmacol Ther. 2014;40(3):250–60.
Soerjomataram I, Lortet-Tieulent J, Parkin DM, Ferlay J, Mathers C, Forman D, et al. International burden of most cancers in 2008: a scientific evaluation of disability-adjusted life-years in 12 world areas. Lancet. 2012;380(9856):1840–50.
Keum N, Giovannucci E. International burden of colorectal most cancers: rising developments, danger elements and prevention methods. Nat Rev Gastroenterol Hepatol. 2019;16(12):713–32.
Shen Y, Wang X, Lu J, Salfenmoser M, Wirsik NM, Schleussner N, et al. Discount of liver metastasis stiffness improves response to bevacizumab in metastatic colorectal most cancers. Most cancers Cell. 2020;37(6):800.
Li J, Yuan Y, Yang F, Wang Y, Zhu X, Wang Z, et al. Skilled consensus on multidisciplinary remedy of colorectal most cancers with lung metastases (2019 version). J Hematol Oncol. 2019;12(1):16.
Tan YK, Fielding JW. Early analysis of early gastric most cancers. Eur J Gastroenterol Hepatol. 2006;18(8):821–9.
Smith D, Ballal M, Hodder R, Soin G, Selvachandran SN, Cade D. Symptomatic presentation of early colorectal most cancers. Ann R Coll Surg Engl. 2006;88(2):185–90.
Seevaratnam R, Cardoso R, McGregor C, Lourenco L, Mahar A, Sutradhar R, et al. How helpful is preoperative imaging for tumor, node, metastasis (TNM) staging of gastric most cancers? A meta-analysis Gastric Most cancers. 2012;15(Suppl 1):S3-18.
Gómez-España MA, Gallego J, González-Flores E, Maurel J, Páez D, Sastre J, et al. SEOM scientific pointers for analysis and therapy of metastatic colorectal most cancers (2018). Clin Transl Oncol. 2019;21(1):46–54.
Amin MB, Greene FL, Edge SB, Compton CC, Gershenwald JE, Brookland RK, et al. The eighth version AJCC most cancers staging: guide persevering with to construct a bridge from a population-based to a extra “personalised” strategy to most cancers staging. CA Most cancers J Clin. 2017;67(2):93–9.
Kim YK, Lee MW, Lee WJ, Kim SH, Rhim H, Lim JH, et al. Diagnostic accuracy and sensitivity of diffusion-weighted and of gadoxetic acid-enhanced 3-T MR imaging alone or together within the detection of small liver metastasis (≤ 1.5 cm in diameter). Make investments Radiol. 2012;47(3):159–66.
Giganti F, De Cobelli F, Canevari C, Orsenigo E, Gallivanone F, Esposito A, et al. Response to chemotherapy in gastric adenocarcinoma with diffusion-weighted MRI and (18) F-FDG-PET/CT: correlation of obvious diffusion coefficient and partial quantity corrected standardized uptake worth with histological tumor regression grade. J Magn Reson Imaging. 2014;40(5):1147–57.
Sheng WQ, Huang D, Ying JM, Lu N, Wu HM, Liu YH, et al. HER2 standing in gastric cancers: a retrospective evaluation from 4 Chinese language consultant scientific facilities and evaluation of its prognostic significance. Ann Oncol. 2013;24(9):2360–4.
Wang FH, Shen L, Li J, Zhou ZW, Liang H, Zhang XT, et al. The chinese language society of scientific oncology (CSCO): scientific pointers for the analysis and therapy of gastric most cancers. Most cancers Commun (Lond). 2019;39(1):10.
Yan J, Wang C, Jiang X, Wei Y, Wang Q, Cui Ok, Xu X, Wang F, Zhang L. Software of phototherapeutic-based nanoparticles in colorectal most cancers. Int J Biol Sci. 2021;17(5):1361–81.
Kwiatkowski S, Knap B, Przystupski D, Saczko J, Kędzierska E, Knap-Czop Ok, et al. Photodynamic remedy – mechanisms, photosensitizers and mixtures. Biomed Pharmacother. 2018;106:1098–107.
Smyth EC, Nilsson M, Grabsch HI, van Grieken NC, Lordick F. Gastric most cancers. Lancet. 2020;396(10251):635–48.
Dekker E, Tanis PJ, Vleugels JLA, Kasi PM, Wallace MB. Colorectal most cancers. Lancet. 2019;394(10207):1467–80.
Ajani JA, D’Amico TA, Almhanna Ok, Bentrem DJ, Chao J, Das P, et al. Gastric most cancers, model 3.2016, NCCN scientific apply pointers in oncology. J Natl Compr Canc Netw. 2016;14(10):1286–312.
Muro Ok, Van Cutsem E, Narita Y, Pentheroudakis G, Baba E, Li J, et al. Pan-asian tailored ESMO scientific apply pointers for the administration of sufferers with metastatic gastric most cancers: a JSMO-ESMO initiative endorsed by CSCO, KSMO, MOS SSO and TOS. Ann Oncol. 2019;30(1):19–33.
Cunningham D, Lang I, Marcuello E, Lorusso V, Ocvirk J, Shin DB, et al. Bevacizumab plus capecitabine versus capecitabine alone in aged sufferers with beforehand untreated metastatic colorectal most cancers (AVEX): an open-label, randomised part 3 trial. Lancet Oncol. 2013;14(11):1077–85.
Van Cutsem E, Tabernero J, Lakomy R, Prenen H, Prausová J, Macarulla T, et al. Addition of aflibercept to fluorouracil, leucovorin, and irinotecan improves survival in a part III randomized trial in sufferers with metastatic colorectal most cancers beforehand handled with an oxaliplatin-based routine. J Clin Oncol. 2012;30(28):3499–506.
Heinemann V, von Weikersthal LF, Decker T, Kiani A, Vehling-Kaiser U, Al-Batran S-E, et al. FOLFIRI plus cetuximab versus FOLFIRI plus bevacizumab as first-line therapy for sufferers with metastatic colorectal most cancers (FIRE-3): a randomised, open-label, part 3 trial. Lancet Oncol. 2014;15(10):1065–75.
Venook AP, Niedzwiecki D, Lenz H-J, Innocenti F, Fruth B, Meyerhardt JA, et al. Impact of first-line chemotherapy mixed with cetuximab or bevacizumab on total survival in sufferers with kras wild-type superior or metastatic colorectal most cancers: a randomized scientific trial. JAMA. 2017;317(23):2392–401.
Han J, Wang Y, Zhu L, Cui Y, Li L, Zeng Z, et al. Stopping the unfold of COVID-19 in digestive endoscopy through the resuming interval: meticulous execution of screening procedures. Gastrointest Endosc. 2020;92(2):445–7.
Hull MA, Rees CJ, Sharp L, Koo S. A risk-stratified strategy to colorectal most cancers prevention and analysis. Nat Rev Gastroenterol Hepatol. 2020;17(12):773–80.
Shimada H, Okazumi S, Koyama M, Murakami Ok. Japanese gastric most cancers affiliation job pressure for analysis promotion: scientific utility of 18F-fluoro-2-deoxyglucose positron emission tomography in gastric most cancers. A scientific evaluation of the literature. Gastric Most cancers. 2011;14(1):13–21.
Dassen AE, Lips DJ, Hoekstra CJ, Pruijt JFM, Bosscha Ok. FDG-PET has no particular position in preoperative imaging in gastric most cancers. Eur J Surg Oncol. 2009;35(5):449–55.
Wagner AD, Syn NL, Moehler M, Grothe W, Yong WP, Tai B-C, et al. Chemotherapy for superior gastric most cancers. Cochrane Database Syst Rev. 2017;8:CD004064.
McQuade RM, Stojanovska V, Bornstein JC, Nurgali Ok. Colorectal most cancers chemotherapy: the evolution of therapy and new approaches. Curr Med Chem. 2017;24(15):1537–57.
Li J, Yao M, Shao Y, Yao D. The applying of bio-nanotechnology in tumor analysis and therapy: a view. Nanotechnol Rev. 2018;7(3):257–66.
Wu IC, Weng Y-H, Lu M-Y, Jen C-P, Fedorov VE, Chen WC, et al. Nano-structure ZnO/Cu<sub>2</sub>O photoelectrochemical and self-powered biosensor for esophageal most cancers cell detection. Choose Categorical. 2017;25(7):7689–706.
Yang B, Zhang Y, Chen B, He M, Yin X, Wang H, et al. A multifunctional probe for ICP-MS willpower and multimodal imaging of most cancers cells. Biosens Bioelectron. 2017;96:77–83.
Chatzimitakos T, Kasouni A, Sygellou L, Avgeropoulos A, Troganis A, Stalikas C. Two of a sort however completely different: luminescent carbon quantum dots from Citrus peels for iron and tartrazine sensing and cell imaging. Talanta. 2017;175:305–12.
Weigum S, McIvor E, Munoz C, Feng R, Cantu T, Walsh Ok, et al. Focused remedy of hepatocellular carcinoma with aptamer-functionalized biodegradable nanoparticles. J Nanopart Res. 2016;18(11):341.
Vaghani SS, Patel MM. pH-sensitive hydrogels based mostly on semi-interpenetrating community (semi-IPN) of chitosan and polyvinyl pyrrolidone for clarithromycin launch. Drug Dev Ind Pharm. 2011;37(10):1160–9.
Zhang G, Ding L, Renegar R, Wang X, Lu Q, Huo S, et al. Hydroxycamptothecin-loaded Fe3O4 nanoparticles induce human lung most cancers cell apoptosis by means of caspase-8 pathway activation and disrupt tight junctions. Most cancers Sci. 2011;102(6):1216–22.
Odiba A, Ukegbu C, Anunobi O, Chukwunonyelum I, Esemonu J. Making medicine safer: bettering drug supply and decreasing the facet impact of medicine on the human biochemical system. Nanotechnol Rev. 2016;5(2):183–94.
Wu W, Chen B, Cheng J, Wang J, Xu W, Liu L, et al. Biocompatibility of Fe3O4/DNR magnetic nanoparticles within the therapy of hematologic malignancies. Int J Nanomedicine. 2010;5:1079–84.
Thakor AS, Gambhir SS. Nanooncology: the way forward for most cancers analysis and remedy. CA Most cancers J Clin. 2013;63(6):395–418.
Chen F, Ehlerding EB, Cai W. Theranostic nanoparticles. J Nucl Med. 2014;55(12):1919–22.
Salapa J, Bushman A, Lowe Ok, Irudayaraj J. Nano drug supply methods in higher gastrointestinal most cancers remedy. Nano Converg. 2020;7(1):38.
Feng R-M, Zong Y-N, Cao S-M, Xu R-H. Present most cancers state of affairs in China: good or dangerous information from the 2018 international most cancers statistics? Most cancers Commun. 2019;39(1):22.
Yao Ok, Uedo N, Kamada T, Hirasawa T, Nagahama T, Yoshinaga S, et al. Tips for endoscopic analysis of early gastric most cancers. Dig Endosc. 2020;32(5):663–98.
Bisschops R, East JE, Hassan C, Hazewinkel Y, Kamiński MF, Neumann H, et al. Superior imaging for detection and differentiation of colorectal neoplasia: european society of gastrointestinal endoscopy (ESGE) guideline—replace 2019. Endoscopy. 2019;51(12):1155–79.
Kaise M. Superior endoscopic imaging for early gastric most cancers. Finest Pract Res Clin Gastroenterol. 2015;29(4):575–87.
Axon A. Is diagnostic and therapeutic endoscopy at present acceptable?: recommendations for enchancment. Finest Pract Res Clin Gastroenterol. 2008;22(5):959–70.
Gado AS, Ebeid BA, Axon AT. High quality assurance in gastrointestinal endoscopy: An Egyptian expertise. Arab J Gastroenterol. 2016;17(4):153–8.
Giday SA, Kim Y, Krishnamurty DM, Ducharme R, Liang DB, Shin EJ, et al. Lengthy-term randomized managed trial of a novel nanopowder hemostatic agent (TC-325) for management of extreme arterial higher gastrointestinal bleeding in a porcine mannequin. Endoscopy. 2011;43(4):296–9.
Seitz U, Block A, Schaefer A-C, Wienhold U, Bohnacker S, Siebert Ok, et al. Biliary stent clogging solved by nanotechnology? In vitro examine of inorganic-organic sol-gel coatings for teflon stents. Gastroenterology. 2007;133(1):65–71.
Kwack WG, Lim YJ. Present Standing and Analysis into Overcoming Limitations of Capsule Endoscopy. Clin Endosc. 2016;49(1):8.
Hale MF, Sidhu R, McAlindon ME. Capsule endoscopy: present apply and future instructions. World J Gastroenterol. 2014;20(24):7752–9.
Liu D, Szili EJ, Ostrikov KK. Plasma drugs: alternatives for nanotechnology in a digital age. Plasma Course of Polym. 2020;17:e2000097.
Moglia A, Pietrabissa A, Cuschieri A. Capsule endoscopy. BMJ. 2009;11(339):b3420. https://doi.org/10.1136/bmj.b3420.
Ankri R, Peretz D, Motiei M, Sella-Tavor O, Popovtzer R. New optical technique for enhanced detection of colon most cancers by capsule endoscopy. Nanoscale. 2013;5(20):9806–11. https://doi.org/10.1039/c3nr02396f.
Yim S, Gultepe E, Gracias DH, Sitti M. Biopsy utilizing a magnetic capsule endoscope carrying, releasing, and retrieving untethered microgrippers. IEEE Trans Biomed Eng. 2014;61(2):513–21.
Du Z, Qi Y, He J, Zhong D, Zhou M. Current advances in functions of nanoparticles in SERS in vivo imaging. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2021;13(2): e1672. https://doi.org/10.1002/wnan.1672.
Zhang Y, Hong H, Myklejord DV, Cai W. Molecular imaging with SERS-active nanoparticles. Small. 2011;7(23):3261–9.
Zavaleta CL, Garai E, Liu JTC, Sensarn S, Mandella MJ, Van de Sompel D, et al. A Raman-based endoscopic technique for multiplexed molecular imaging. Proc Natl Acad Sci USA. 2013;110(25):E2288–97.
Garai E, Sensarn S, Zavaleta CL, Loewke NO, Rogalla S, Mandella MJ, et al. An actual-time scientific endoscopic system for intraluminal, multiplexed imaging of surface-enhanced Raman scattering nanoparticles. PLoS ONE. 2015;10(4): e0123185.
Garai E, Sensarn S, Zavaleta CL, Van de Sompel D, Loewke NO, Mandella MJ, et al. Excessive-sensitivity, real-time, ratiometric imaging of surface-enhanced Raman scattering nanoparticles with a clinically translatable Raman endoscope machine. J Biomed Choose. 2013;18(9): 096008.
Zavaleta CL, Hartman KB, Miao Z, James ML, Kempen P, Thakor AS, et al. Preclinical analysis of Raman nanoparticle biodistribution for his or her potential use in scientific endoscopy imaging. Small. 2011;7(15):2232–40.
Du Y, Fan Ok, Zhang H, Li L, Wang P, He J, et al. Endoscopic molecular imaging of early gastric most cancers utilizing fluorescently labeled human H-ferritin nanoparticle. Nanomedicine. 2018;14(7):2259–70.
Li Z, Zuo XL, Li CQ, Zhou CJ, Liu J, Goetz M, et al. In vivo molecular imaging of gastric most cancers by concentrating on MG7 antigen with confocal laser endomicroscopy. Endoscopy. 2013;45(2):79–85.
Duffy MJ, Lamerz R, Haglund C, Nicolini A, Kalousová M, Holubec L, et al. Tumor markers in colorectal most cancers, gastric most cancers and gastrointestinal stromal cancers: European group on tumor markers 2014 pointers replace. Int J Most cancers. 2014;134(11):2513–22.
Chen H-M, Fang J-Y. Epigenetic biomarkers for the early detection of gastrointestinal most cancers. Gastrointest Tumors. 2014;1(4):201–8.
Grady WM, Yu M, Markowitz SD. Epigenetic alterations within the gastrointestinal tract: present and rising use for biomarkers of most cancers. Gastroenterology. 2021;160(3):690–709.
Wang Y, Li Z, Xu S, Guo J. Novel potential tumor biomarkers: round RNAs and exosomal round RNAs in gastrointestinal malignancies. J Clin Lab Anal. 2020;34(7): e23359.
Leung WK, Wu M-S, Kakugawa Y, Kim JJ, Yeoh Ok-G, Goh KL, et al. Screening for gastric most cancers in Asia: present proof and apply. Lancet Oncol. 2008;9(3):279–87.
Wang X, Shu G, Gao C, Yang Y, Xu Q, Tang M. Electrochemical biosensor based mostly on purposeful composite nanofibers for detection of Ok-ras gene by way of a number of sign amplification technique. Anal Biochem. 2014;466:51–8.
Wang Q, Li Q, Yang X, Wang Ok, Du S, Zhang H, et al. Graphene oxide-gold nanoparticles hybrids-based floor plasmon resonance for delicate detection of microRNA. Biosens Bioelectron. 2016;77:1001–7.
Daneshpour M, Omidfar Ok, Ghanbarian H. A novel electrochemical nanobiosensor for the ultrasensitive and particular detection of femtomolar-level gastric most cancers biomarker miRNA-106a. Beilstein J Nanotechnol. 2016;7:2023–36.
Ratajczak Ok, Krazinski BE, Kowalczyk AE, Dworakowska B, Jakiela S, Stobiecka M. Optical biosensing system for the detection of survivin mRNA in colorectal most cancers cells utilizing a graphene oxide carrier-bound oligonucleotide molecular beacon. Nanomaterials. 2018;8(7):510.
Tran DP, Winter MA, Wolfrum B, Stockmann R, Yang C-T, Pourhassan-Moghaddam M, et al. Towards intraoperative detection of disseminated tumor cells in lymph nodes with silicon nanowire subject impact transistors. ACS Nano. 2016;10(2):2357–64.
Shehada N, Brönstrup G, Funka Ok, Christiansen S, Leja M, Haick H. Ultrasensitive silicon nanowire for real-world fuel sensing: noninvasive analysis of most cancers from breath volatolome. Nano Lett. 2015;15(2):1288–95.
Barrow E, Evans DG, McMahon R, Hill J, Byers R. A comparative examine of quantitative immunohistochemistry and quantum dot immunohistochemistry for mutation provider identification in lynch syndrome. J Clin Pathol. 2011;64(3):208–14.
Xing X, Zhang B, Wang X, Liu F, Shi D, Cheng Y. An, “imaging-biopsy” technique for colorectal tumor reconfirmation by multipurpose paramagnetic quantum dots. Biomaterials. 2015;48:16–25.
Solar J, Zhang S, Jiang S, Bai W, Liu F, Yuan H, et al. Gadolinium-loaded strong lipid nanoparticles as a tumor-absorbable distinction agent for early analysis of colorectal tumors utilizing magnetic resonance colonography. J Biomed Nanotechnol. 2016;12(9):1709–23.
Wang H, Ding W, Peng L, Fan H, Yan C, Xu S, et al. Gadolinium-loaded strong lipid nanoparticles for colorectal tumor in mr colonography. J Biomed Nanotechnol. 2020;16(5):594–602.
Khantasup Ok, Saiviroonporn P, Jarussophon S, Chantima W, Dharakul T. Anti-EpCAM scFv gadolinium chelate: a novel focused MRI distinction agent for imaging of colorectal most cancers. MAGMA. 2018;31(5):633–44.
Shi H, Solar Y, Yan R, Liu S, Zhu L, Liu S, et al. Magnetic Semiconductor Gd-Doping CuS nanoparticles as activatable nanoprobes for bimodal imaging and focused photothermal remedy of gastric tumors. Nano Lett. 2019;19(2):937–47.
Bakhtiary Z, Saei AA, Hajipour MJ, Raoufi M, Vermesh O, Mahmoudi M. Focused superparamagnetic iron oxide nanoparticles for early detection of most cancers: prospects and challenges. Nanomedicine. 2016;12(2):287–307.
Laurent S, Dutz S, Häfeli UO, Mahmoudi M. Magnetic fluid hyperthermia: concentrate on superparamagnetic iron oxide nanoparticles. Adv Colloid Interface Sci. 2011;166(1–2):8.
Wang P, Qu Y, Li C, Yin L, Shen C, Chen W, et al. Bio-functionalized dense-silica nanoparticles for MR/NIRF imaging of CD146 in gastric most cancers. Int J Nanomed. 2015;10:749–63.
Yan X, Tune X, Wang Z. Development of particular magnetic resonance imaging/optical dual-modality molecular probe used for imaging angiogenesis of gastric most cancers. Artif Cells Nanomed Biotechnol. 2017;45(3):399–403.
Guo H, Zhang Y, Liang W, Tai F, Dong Q, Zhang R, et al. An inorganic magnetic fluorescent nanoprobe with favorable biocompatibility for dual-modality bioimaging and drug supply. J Inorg Biochem. 2019;192:72–81.
Ma Y-Y, Jin Ok-T, Wang S-B, Wang H-J, Tong X-M, Huang D-S, et al. Molecular imaging of most cancers with nanoparticle-based theranostic probes. Distinction Media Mol Imaging. 2017;2017:1026270.
Moreno C, Kim DH, Bartel TB, Money BD, Chang KJ, Feig BW, et al. ACR appropriateness standards colorectal most cancers screening. J Am Coll Radiol. 2018;15(5S):S56–68.
Kimm MA, Shevtsov M, Werner C, Sievert W, Zhiyuan W, Schoppe O, et al. Gold nanoparticle mediated multi-modal CT imaging of Hsp70 membrane-positive tumors. Cancers. 2020;12(5):1331.
Kim CS, Wilder-Smith P, Ahn Y-C, Liaw L-HL, Chen Z, Kwon YJ. Enhanced detection of early-stage oral most cancers in vivo by optical coherence tomography utilizing multimodal supply of gold nanoparticles. J Biomed Choose. 2009;14(3):034008.
Zhou Z, Zhang C, Qian Q, Ma J, Huang P, Zhang X, et al. Folic acid-conjugated silica capped gold nanoclusters for focused fluorescence/X-ray computed tomography imaging. J Nanobiotechnology. 2013;11:17.
Zhang Ok, Du X, Yu Ok, Zhang Ok, Zhou Y. Software of novel concentrating on nanoparticles distinction agent mixed with contrast-enhanced computed tomography throughout screening for early-phase gastric carcinoma. Exp Ther Med. 2018;15(1):47–54.
Yong Y, Zhou L, Gu Z, Yan L, Tian G, Zheng X, et al. WS2 nanosheet as a brand new photosensitizer provider for mixed photodynamic and photothermal remedy of most cancers cells. Nanoscale. 2014;6(17):10394–403.
Zhou Z, Kong B, Yu C, Shi X, Wang M, Liu W, et al. Tungsten oxide nanorods: an environment friendly nanoplatform for tumor CT imaging and photothermal remedy. Sci Rep. 2014;4:3653.
Meta J, Seltzer M, Schiepers C, Silverman DH, Ariannejad M, Gambhir SS, et al. Affect of 18F-FDG PET on managing sufferers with colorectal most cancers: the referring doctor’s perspective. J Nucl Med. 2001;42(4):586–90.
Jing B, Qian R, Jiang D, Gai Y, Liu Z, Guo F, et al. Extracellular vesicles-based pre-targeting technique allows multi-modal imaging of orthotopic colon most cancers and image-guided surgical procedure. J Nanobiotechnol. 2021;19(1):151.
Wanderi Ok, Cui Z. Natural fluorescent nanoprobes with NIR-IIb traits for deep studying. Exploration. 2022;2(2):20210097.
Matsui A, Tanaka E, Choi HS, Winer JH, Kianzad V, Gioux S, et al. Actual-time intra-operative near-infrared fluorescence identification of the extrahepatic bile ducts utilizing clinically obtainable distinction brokers. Surgical procedure. 2010;148(1):87–95.
Lee JH, Son T, Chung YE, Cho M, Kim YM, Kwon IG, et al. Actual-time identification of aberrant left hepatic arterial territories utilizing near-infrared fluorescence with indocyanine inexperienced throughout gastrectomy for gastric most cancers. Surg Endosc. 2021;35(5):2389–97.
Ding J, Feng M, Wang F, Wang H, Guan W. Focusing on impact of PEGylated liposomes modified with the Arg-Gly-Asp sequence on gastric most cancers. Oncol Rep. 2015;34(4):1825–34.
Tivony R, Larush L, Sela-Tavor O, Magdassi S. Biomedical imaging of colorectal most cancers by close to infrared fluorescent nanoparticles. J Biomed Nanotechnol. 2014;10(6):1041–8.
Tsujimoto H, Morimoto Y, Takahata R, Nomura S, Yoshida Ok, Hiraki S, et al. Theranostic photosensitive nanoparticles for lymph node metastasis of gastric most cancers. Ann Surg Oncol. 2015;22(Suppl 3):S923–8.
Wang S, Chi C, Cheng H, Pan X, Li S, Zhang F, et al. Photothermal adjunctive cytoreductive surgical procedure for treating peritoneal metastasis of gastric most cancers. Small Strategies. 2018;2(4):1700368.
Cohen S, Pellach M, Kam Y, Grinberg I, Corem-Salkmon E, Rubinstein A, et al. Synthesis and characterization of close to IR fluorescent albumin nanoparticles for optical detection of colon most cancers. Mater Sci Eng C Mater Biol Appl. 2013;33(2):923–31.
Yoon SM, Myung SJ, Kim IW, Do EJ, Ye BD, Ryu JH, et al. Software of near-infrared fluorescence imaging utilizing a polymeric nanoparticle-based probe for the analysis and therapeutic monitoring of colon most cancers. Dig Dis Sci. 2011;56(10):3005–13.
Tian R, Zhao S, Liu G, Chen H, Ma L, You H, et al. Development of lanthanide-doped upconversion nanoparticle-Uelx Europaeus agglutinin-I bioconjugates with brightness purple emission for ultrasensitive in vivo imaging of colorectal tumor. Biomaterials. 2019;212:64–72.
Tian R, Ma H, Yang Q, Wan H, Zhu S, Chandra S, et al. Rational design of a super-contrast NIR-II fluorophore affords high-performance NIR-II molecular imaging guided microsurgery. Chem Sci. 2019;10(1):326–32.
Attia ABE, Balasundaram G, Moothanchery M, Dinish US, Bi R, Ntziachristos V, et al. A evaluation of scientific photoacoustic imaging: present and future developments. Photoacoustics. 2019;16: 100144.
Yamada H, Matsumoto N, Komaki T, Konishi H, Kimura Y, Son A, et al. Photoacoustic in vivo 3D imaging of tumor utilizing a extremely tumor-targeting probe beneath high-threshold circumstances. Sci Rep. 2020;10(1):19363.
Yang RQ, Lou KL, Wang PY, Gao YY, Zhang YQ, Chen M, et al. Surgical navigation for malignancies guided by near-infrared-II fluorescence imaging. Small Strategies. 2021;5(3): e2001066.
Rogalla S, Flisikowski Ok, Gorpas D, Mayer AT, Flisikowska T, Mandella MJ, et al. Biodegradable fluorescent nanoparticles for endoscopic detection of colorectal carcinogenesis. Adv Funct Mater. 2019;29(51):1904992.
Opilik L, Schmid T, Zenobi R. Trendy Raman imaging: vibrational spectroscopy on the micrometer and nanometer scales. Annu Rev Anal Chem. 2013;6:379–98.
Yilmaz H, Yilmaz D, Taskin IC, Culha M. Pharmaceutical functions of a nanospectroscopic approach: surface-enhanced Raman spectroscopy. Adv Drug Deliv Rev. 2022;184: 114184.
Harmsen S, Rogalla S, Huang R, Spaliviero M, Neuschmelting V, Hayakawa Y, et al. Detection of premalignant gastrointestinal lesions utilizing surface-enhanced resonance Raman scattering-nanoparticle endoscopy. ACS Nano. 2019;13(2):1354–64.
Dhillon SS, Demmy TL, Yendamuri S, Loewen G, Nwogu C, Cooper M, et al. A part I examine of sunshine dose for photodynamic remedy utilizing 2-[1-hexyloxyethyl]-2 devinyl pyropheophorbide-a for the therapy of non-small cell carcinoma in situ or non-small cell microinvasive bronchogenic carcinoma: a dose ranging examine. J Thorac Oncol. 2016;11(2):234–41.
Mao B, Liu C, Zheng W, Li X, Ge R, Shen H, et al. Cyclic cRGDfk peptide and chlorin e6 functionalized silk fibroin nanoparticles for focused drug supply and photodynamic remedy. Biomaterials. 2018;161:306–20.
Yan Z, Wang M, Shi M, He Y, Zhang Y, Qiu S, et al. Amphiphilic BODIPY dye aggregates in polymeric micelles for wavelength-dependent photo-induced most cancers remedy. J Mater Chem B. 2020;8(31):6886–97.
Zhang Y, Yang Z, Zheng X, Chen L, Xie Z. Extremely environment friendly near-infrared BODIPY phototherapeutic nanoparticles for most cancers therapy. J Mater Chem B. 2020;8(24):5305–11.
Yan J, Wang C, Jiang X, Wei Y, Wang Q, Cui Ok, et al. Software of phototherapeutic-based nanoparticles in colorectal most cancers. Int J Biol Sci. 2021;17(5):1361–81.
Richter Ok, Haslbeck M, Buchner J. The warmth shock response: life on the verge of demise. Mol Cell. 2010;40(2):253–66.
Gournaris E, Park W, Cho S, Bentrem DJ, Larson AC, Kim DH. Close to-infrared fluorescent endoscopic image-guided photothermal ablation remedy of colorectal most cancers utilizing dual-modal gold nanorods concentrating on tumor-infiltrating innate immune cells in a transgenic TS4 CRE/APC (loxΔ468) mouse mannequin. ACS Appl Mater Interfaces. 2019;11(24):21353–9.
Ye L, Chen Y, Mao J, Lei X, Yang Q, Cui C. Dendrimer-modified gold nanorods as a platform for combinational gene remedy and photothermal remedy of tumors. J Exp Clin Most cancers Res. 2021;40(1):303.
Ni W, Wu J, Fang H, Feng Y, Hu Y, Lin L, et al. Photothermal-chemotherapy enhancing tumor immunotherapy by multifunctional metal-organic framework based mostly drug supply system. Nano Lett. 2021;21(18):7796–805.
Liu H, Xu C, Meng M, Li S, Sheng S, Zhang S, et al. Steel-organic framework-mediated multifunctional nanoparticles for mixed chemo-photothermal remedy and enhanced immunotherapy in opposition to colorectal most cancers. Acta Biomater. 2022;144:132–41.
Juarranz A, Jaén P, Sanz-Rodríguez F, Cuevas J, González S. Photodynamic remedy of most cancers Fundamental rules and functions. Clin Transl. 2008;10(3):148–54.
Celli JP, Spring BQ, Rizvi I, Evans CL, Samkoe KS, Verma S, et al. Imaging and photodynamic remedy: mechanisms, monitoring, and optimization. Chem Rev. 2010;110(5):2795–838.
Cui X, Zhang Z, Yang Y, Li S, Lee C-S. Natural radical supplies in biomedical functions: cutting-edge and views. Exploration. 2022;2(2):20210264.
Chen M, Liang X, Gao C, Zhao R, Zhang N, Wang S, et al. Ultrasound triggered conversion of porphyrin/camptothecin-fluoroxyuridine triad microbubbles into nanoparticles overcomes multidrug resistance in colorectal most cancers. ACS Nano. 2018;12(7):7312–26.
Yin T, Huang P, Gao G, Shapter JG, Shen Y, Solar R, et al. Superparamagnetic Fe(3)O(4)-PEG(2K)[email protected] Nanoprobes for in Vivo dual-mode imaging and focused photodynamic remedy. Sci Rep. 2016;6:36187.
Fang F, Zhu L, Li M, Tune Y, Solar M, Zhao D, Zhang J. Thermally activated delayed fluorescence materials: an rising class of metal-free luminophores for biomedical functions. Adv Sci (Weinh). 2021;8(24):e2102970.
Fang F, Yuan Y, Wan Y, Li J, Tune Y, Chen WC, et al. Close to-infrared thermally activated delayed fluorescence nanoparticle: a metal-free photosensitizer for two-photon-activated photodynamic remedy on the cell and small animal ranges. Small. 2022;18(6):e2106215.
Joshi SS, Badgwell BD. Present therapy and up to date progress in gastric most cancers. CA Most cancers J Clin. 2021;71(3):264–79.
Shitara Ok, Doi T, Dvorkin M, Mansoor W, Arkenau HT, Prokharau A, et al. Trifluridine/tipiracil versus placebo in sufferers with closely pretreated metastatic gastric most cancers (TAGS): a randomised, double-blind, placebo-controlled, part 3 trial. Lancet Oncol. 2018;19(11):1437–48.
Ciardiello F, Ciardiello D, Martini G, Napolitano S, Tabernero J, Cervantes A. Scientific administration of metastatic colorectal most cancers within the period of precision drugs. CA Most cancers J Clin. 2022;72:372.
Wathoni N, Nguyen AN, Rusdin A, Umar AK, Mohammed AFA, Motoyama Ok, et al. Enteric-coated methods in colorectal most cancers nanoparticle drug supply system. Drug Des Dev Ther. 2020;14:4387.
Hu Q, Katti PS, Gu Z. Enzyme-responsive nanomaterials for managed drug supply. Nanoscale. 2014;6:12273–86.
Karimi M, Ghasemi A, Sahandi Zangabad P, et al. Sensible micro/nanoparticles in stimulus-responsive drug/gene supply methods. Chem Soc Rev. 2016;45:1457–501.
Herszényi L, Hritz I, Lakatos G, Varga MZ, Tulassay Z. The habits of matrix metalloproteinases and their inhibitors in colorectal most cancers. Int J Mol Sci. 2012;13(10):13240–63.
Bouga H, Tsouros I, Bounias D, Kyriakopoulou D, Stavropoulos MS, Papageorgakopoulou N, et al. Involvement of hyaluronidases in colorectal most cancers. BMC Most cancers. 2010;17(10):499.
Husain SS, Szabo IL, Tarnawski AS. NSAID inhibition of GI most cancers development: scientific implications and molecular mechanisms of motion. Am J Gastroenterol. 2002;97(3):542–53.
Santhanam S, Alvarado DM, Ciorba MA. Therapeutic concentrating on of irritation and tryptophan metabolism in colon and gastrointestinal most cancers. Transl Res. 2016;167(1):67–79.
Mauriz JL, Martín-Renedo J, García-Palomo A, Tuñón MJ, González-Gallego J. Methionine aminopeptidases as potential targets for therapy of gastrointestinal cancers and different tumours. Curr Drug Targets. 2010;11(11):1439–57.
Wang Q, Geng W, Guo H, Wang Z, Xu Ok, Chen C, et al. Rising position of RNA methyltransferase METTL3 in gastrointestinal most cancers. J Hematol Oncol. 2020;13(1):57.
Zhou CF, Li XB, Solar H, Zhang B, Han YS, Jiang Y, et al. Pyruvate kinase kind M2 is upregulated in colorectal most cancers and promotes proliferation and migration of colon most cancers cells. IUBMB Life. 2012;64(9):775–82.
Kontos CK, Mavridis Ok, Talieri M, Scorilas A. Kallikrein-related peptidases (KLKs) in gastrointestinal most cancers: mechanistic and scientific elements. Thromb Haemost. 2013;110(3):450–7.
Karimi M, Eslami M, Sahandi-Zangabad P, et al. pH-Delicate stimulus-responsive nanocarriers for focused supply of therapeutic brokers. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2016;8:696–716.
Thakral S, Thakral NK, Majumdar DK. Eudragit: a know-how analysis. Skilled Opin Drug Deliv. 2013;10:131–49.
Sood A, Dev A, Mohanbhai SJ, Shrimali N, Kapasiya M, Kushwaha AC, et al. Disulfide-bridged chitosan-eudragit S-100 nanoparticles for colorectal most cancers. ACS Utilized Nano Supplies. 2019;2(10):6409–17.
Sharma A, Kim EJ, Shi H, Lee JY, Chung BG, Kim JS. Growth of a theranostic prodrug for colon most cancers remedy by combining ligand-targeted supply and enzyme-stimulated activation. Biomaterials. 2018;155:145–51.
Feng X, Xu W, Liu J, Li D, Li G, Ding J, et al. Polypeptide nanoformulation-induced immunogenic cell demise and remission of immunosuppression for enhanced chemoimmunotherapy. Sci Bulletin. 2021;66(4):362–73.
Liu D, Yang F, Xiong F, Gu N. The sensible drug supply system and its scientific potential. Theranostics. 2016;6(9):1306–23.
Wu T, Tan L, Cheng N, Yan Q, Zhang YF, Liu CJ, et al. PNIPAAM modified mesoporous hydroxyapatite for sustained osteogenic drug launch and selling cell attachment. Mater Sci Eng C Mater Biol Appl. 2016;62:888–96.
Sanità G, Carrese B, Lamberti A. Nanoparticle floor functionalization: how you can enhance biocompatibility and mobile internalization. Entrance Mol Biosci. 2020;26(7): 587012.
Carreño G, Pereira A, Ávila-Salas F, Marican A, Andrade F, Roca-Melendres MM, et al. Growth of “on-demand” thermo-responsive hydrogels for anti-cancer medicine sustained launch: rational design, in silico prediction and in vitro validation in colon most cancers fashions. Mater Sci Eng C Mater Biol Appl. 2021;131: 112483.
Bulbake U, Doppalapudi S, Kommineni N, Khan W. Liposomal formulations in scientific use: an up to date evaluation. Pharmaceutics. 2017;9(2):12.
Das M, Huang L. Liposomal nanostructures for drug supply in gastrointestinal cancers. J Pharmacol Exp Ther. 2019;370(3):647–56.
Solar Y, Xie Y, Tang H, Ren Z, Luan X, Zhang Y, et al. In vitro and in vivo analysis of a novel estrogen-targeted pegylated oxaliplatin liposome for gastric most cancers. Int J Nanomed. 2021;16:8279–303.
Ansari MA, Thiruvengadam M, Venkidasamy B, Alomary MN, Salawi A, Chung IM, et al. Exosome-based nanomedicine for most cancers therapy by concentrating on inflammatory pathways: present standing and future views. Semin Most cancers Biol. 2022;S1044-579X((22)):0009–12.
Hui B, Lu C, Wang J, Xu Y, Yang Y, Ji H, et al. Engineered exosomes for co-delivery of PGM5-AS1 and oxaliplatin to reverse drug resistance in colon most cancers. J Cell Physiol. 2022;237(1):911–33.
Kaur J, Gulati M, Jha NK, Disouza J, Patravale V, Dua Ok, et al. Current advances in creating polymeric micelles for treating most cancers: breakthroughs and bottlenecks of their scientific translation. Drug Discov At present. 2022;27(5):1495–512.
Dos Santos AM, Meneguin AB, Akhter DT, Fletcher N, Houston ZH, Bell C, et al. Understanding the position of colon-specific microparticles based mostly on retrograded starch/pectin within the supply of chitosan nanoparticles alongside the gastrointestinal tract. Eur J Pharm Biopharm. 2021;158:371–8.
Fernandes E, Ferreira D, Peixoto A, Freitas R, Relvas-Santos M, Palmeira C, et al. Glycoengineered nanoparticles improve the supply of 5-fluoroucil and paclitaxel to gastric most cancers cells of excessive metastatic potential. Int J Pharm. 2019;570: 118646.
Wang H, Picchio ML, Calderón M. One stone, many birds: Current advances in purposeful nanogels for most cancers nanotheranostics. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2022;14:1791.
Ohta S, Hiramoto S, Amano Y, Emoto S, Yamaguchi H, Ishigami H, et al. Intraperitoneal supply of cisplatin by way of a hyaluronan-based nanogel/in situ cross-linkable hydrogel hybrid system for peritoneal dissemination of gastric most cancers. Mol Pharm. 2017;14(9):3105–13.
Al Sharabati M, Sabouni R, Husseini GA. Biomedical functions of metal-organic frameworks for illness analysis and drug supply: a evaluation. Nanomaterials. 2022;12(2):277.
Javanbakht S, Hemmati A, Namazi H, Heydari A. Carboxymethylcellulose-coated [email protected] nano-hybrid as a bio-nanocomposite provider for the anticancer oral supply. Int J Biol Macromol. 2020;155:876–82.
Katona BW, Rustgi AK. Gastric most cancers genomics: advances and future instructions. Cell Mol Gastroenterol Hepatol. 2017;3(2):211–7.
Lazarus J, Maj T, Smith JJ, Perusina Lanfranca M, Rao A, D’Angelica MI, et al. Spatial and phenotypic immune profiling of metastatic colon most cancers. JCI Perception. 2018. https://doi.org/10.1172/jci.perception.121932.
Kubota T, Kuroda S, Kanaya N, Morihiro T, Aoyama Ok, Kakiuchi Y, et al. HER2-targeted gold nanoparticles probably overcome resistance to trastuzumab in gastric most cancers. Nanomedicine. 2018;14(6):1919–29.
Sabra R, Billa N, Roberts CJ. Cetuximab-conjugated chitosan-pectinate (modified) composite nanoparticles for concentrating on colon most cancers. Int J Pharm. 2019;572: 118775.
Zhang Z, Niu B, Chen J, He X, Bao X, Zhu J, et al. The usage of lipid-coated nanodiamond to enhance bioavailability and efficacy of sorafenib in resisting metastasis of gastric most cancers. Biomaterials. 2014;35(15):4565–72.
Lin YW, Raj EN, Liao WS, Lin J, Liu KK, Chen TH, et al. Co-delivery of paclitaxel and cetuximab by nanodiamond enhances mitotic disaster and tumor inhibition. Sci Rep. 2017;7(1):9814.
Schmid D, Park CG, Hartl CA, Subedi N, Cartwright AN, Puerto RB, et al. T cell-targeting nanoparticles focus supply of immunotherapy to enhance antitumor immunity. Nat Commun. 2017;8(1):1747.
Zhang Z, Yang W, Ma F, Ma Q, Zhang B, Zhang Y, et al. Enhancing the chemotherapy impact of Apatinib on gastric most cancers by co-treating with salidroside to reprogram the tumor hypoxia micro-environment and induce cell apoptosis. Drug Deliv. 2020;27(1):691–702.
Nosrati R, Abnous Ok, Alibolandi M, Mosafer J, Dehghani S, Taghdisi SM, et al. Focused SPION siderophore conjugate loaded with doxorubicin as a theranostic agent for imaging and therapy of colon carcinoma. Sci Rep. 2021;11(1):13065.
Zhang RY, Cheng Ok, Xuan Y, Yang XQ, An J, Hu YG, et al. A pH/ultrasonic dual-response step-targeting enterosoluble granule for mixed sonodynamic-chemotherapy guided by way of gastrointestinal tract imaging in orthotopic colorectal most cancers. Nanoscale. 2021;13(7):4278–94.
Wu B, Li Ok, Solar F, Niu J, Zhu R, Qian Y, et al. Trifunctional graphene quantum [email protected] built-in nanoprobes for visualization remedy of gastric most cancers. Adv Healthc Mater. 2021;10(16): e2100512.
Yang X, Xue X, Luo Y, Lin TY, Zhang H, Lac D, et al. Sub-100nm, lengthy tumor retention SN-38-loaded photonic micelles for tri-modal most cancers remedy. J Management Launch. 2017;261:297–306.
Chen G, Zhao Y, Xu Y, Zhu C, Liu T, Wang Ok. Chitosan nanoparticles for oral photothermally enhanced photodynamic remedy of colon most cancers. Int J Pharm. 2020;589: 119763.
Gong L, Zhang Y, Zhao J, Zhang Y, Tu Ok, Jiao L, et al. All-in-one biomimetic nanoplatform based mostly on hole polydopamine nanoparticles for synergistically enhanced radiotherapy of colon most cancers. Small. 2022;18(14): e2107656.
Deng W, Chen W, Clement S, Guller A, Zhao Z, Engel A, et al. Managed gene and drug launch from a liposomal supply platform triggered by x-ray radiation. Nat Commun. 2018;9(1):2713.
Hashemkhani M, Demirci G, Bayir A, Muti A, Sennaroglu A, Mohammad Hadi L, et al. Cetuximab-Ag(2)S quantum dots for fluorescence imaging and extremely efficient mixture of ALA-based photodynamic/chemo-therapy of colorectal most cancers cells. Nanoscale. 2021;13(35):14879–99.
He C, Duan X, Guo N, Chan C, Poon C, Weichselbaum RR, et al. Core-shell nanoscale coordination polymers mix chemotherapy and photodynamic remedy to potentiate checkpoint blockade most cancers immunotherapy. Nat Commun. 2016;7:12499.
Wu X, Yang H, Chen X, Gao J, Duan Y, Wei D, et al. Nano-herb drugs and PDT induced synergistic immunotherapy for colon most cancers therapy. Biomaterials. 2021;269: 120654.
Yuan Z, Fan G, Wu H, Liu C, Zhan Y, Qiu Y, et al. Photodynamic remedy synergizes with PD-L1 checkpoint blockade for immunotherapy of CRC by multifunctional nanoparticles. Mol Ther. 2021;29(10):2931–48.
Wilhelm S, Tavares AJ, Dai Q, Ohta S, Audet J, Dvorak HF, et al. Evaluation of nanoparticle supply to tumours. Nat Rev Mater. 2016;1(5):16014.
Frtús A, Smolková B, Uzhytchak M, Lunova M, Jirsa M, Kubinová Š, et al. Analyzing the mechanisms of iron oxide nanoparticles interactions with cells: a highway from failure to success in scientific functions. J Management Launch. 2020;328:59–77.